

General Certificate of Education Advanced Level Examination June 2011

Mathematics

Unit Pure Core 4

Thursday 16 June 20111.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=4 x^{3}-13 x+6$.
(a) Find $\mathrm{f}(-2)$.
(b) Use the Factor Theorem to show that $2 x-3$ is a factor of $\mathrm{f}(x)$.
(c) Simplify $\frac{2 x^{2}+x-6}{\mathrm{f}(x)}$.

2 The average weekly pay of a footballer at a certain club was $£ 80$ on 1 August 1960 . By 1 August 1985, this had risen to $£ 2000$.

The average weekly pay of a footballer at this club can be modelled by the equation

$$
P=A k^{t}
$$

where $£ P$ is the average weekly pay t years after 1 August 1960 , and A and k are constants.
(a) (i) Write down the value of A.
(ii) Show that the value of k is 1.137411 , correct to six decimal places.
(b) Use this model to predict the year in which, on 1 August, the average weekly pay of a footballer at this club will first exceed $£ 100000$.

3 (a) (i) Find the binomial expansion of $(1-x)^{\frac{1}{3}}$ up to and including the term in x^{2}.
(2 marks)
(ii) Hence, or otherwise, show that

$$
(125-27 x)^{\frac{1}{3}} \approx 5+\frac{m}{25} x+\frac{n}{3125} x^{2}
$$

for small values of x, stating the values of the integers m and n.
(b) Use your result from part (a)(ii) to find an approximate value of $\sqrt[3]{119}$, giving your answer to five decimal places.
(2 marks)

4 (a) A curve is defined by the parametric equations $x=3 \cos 2 \theta, y=2 \cos \theta$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{k \cos \theta}$, where k is an integer.
(ii) Find an equation of the normal to the curve at the point where $\theta=\frac{\pi}{3}$. \quad (4 marks)
(b) Find the exact value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{2} x \mathrm{~d} x$.
$5 \quad$ The points A and B have coordinates $(5,1,-2)$ and (4, $-1,3)$ respectively.
The line l has equation $\mathbf{r}=\left[\begin{array}{r}-8 \\ 5 \\ -6\end{array}\right]+\mu\left[\begin{array}{r}5 \\ 0 \\ -2\end{array}\right]$.
(a) Find a vector equation of the line that passes through A and B.
(b) (i) Show that the line that passes through A and B intersects the line l, and find the coordinates of the point of intersection, P.
(ii) The point C lies on l such that triangle $P B C$ has a right angle at B. Find the coordinates of C.
$6 \quad$ A curve is defined by the equation $2 y+\mathrm{e}^{2 x} y^{2}=x^{2}+C$, where C is a constant. The point $P\left(1, \frac{1}{\mathrm{e}}\right)$ lies on the curve.
(a) Find the exact value of C.
(b) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(c) Verify that $P\left(1, \frac{1}{\mathrm{e}}\right)$ is a stationary point on the curve.

7 A giant snowball is melting. The snowball can be modelled as a sphere whose surface area is decreasing at a constant rate with respect to time. The surface area of the sphere is $A \mathrm{~cm}^{2}$ at time t days after it begins to melt.
(a) Write down a differential equation in terms of the variables A and t and a constant k, where $k>0$, to model the melting snowball.
(2 marks)
(b) (i) Initially, the radius of the snowball is 60 cm , and 9 days later, the radius has halved.

Show that $A=1200 \pi(12-t)$.
(You may assume that the surface area of a sphere is given by $A=4 \pi r^{2}$, where r is the radius.)
(ii) Use this model to find the number of days that it takes the snowball to melt completely.

8 (a) $\operatorname{Express} \frac{1}{(3-2 x)(1-x)^{2}}$ in the form $\frac{A}{3-2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}$.
(b) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \sqrt{y}}{(3-2 x)(1-x)^{2}}
$$

where $y=0$ when $x=0$, expressing your answer in the form

$$
y^{p}=q \ln [\mathrm{f}(x)]+\frac{x}{1-x}
$$

where p and q are constants.

END OF QUESTIONS

